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WAVELET SPARSE APPROXIMATE INVERSE PRECONDITIONERS

TONY F. CHAN *, W. P. TANG t AND W. L. WAN*

Abstract. There is an increasing interest in using sparse approximate inverses as preconditioners

for Krylov subspace iterative methods. Recent studies of Grote and Huckle [21] and Chow and Saad

[11] also show that sparse approximate inverse preconditioner can be effective for a variety of matrices,

e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse
entries so that sparse approximate inverse is possible. However, for the class of matrices that come

from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a
basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial
observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse.

We exploit this fact by applying wavelet techniques to construct a better sparse approximate inverse
in the wavelet basis. We shah justify theoretically and numerically that our approach is effective for
matrices with smooth inverse.

We emphasize that in this paper we have only presented the idea of wavelet approximate inverses

and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

Key words, preconditioning, approximate inverses, sparse matrices, wavelets
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1. Introduction. Preconditioners are often used to accelerate the solution process of Krylov

subspace iterative methods for solving linear systems:

Ax=b,

where A is large and sparse. If in addition, A is derived from an elliptic PDE problem, optimal

preconditioners, in the sense that the condition number of the preconditioned systems is independent of
the mesh size, such as multigrid and domain decomposition, have been proposed [24] [9] [29]. However,

they are not readily applicable to general matrices. Incomplete LU factorization (ILLI) preconditioners
are often used instead. In fact, ILU is widely used as a preconditioner to solve both general and PDE

problems for its robustness. Unfortunately, the parallelization is not straightforward.

Ideally, we would like to have a parallel preconditioner which is robust for both general and PDE

problems. The recent interest of sparse approximate inverse may be because it is a potential candidate

for such preconditioner. On one hand, it possesses a conceptually straightforward parallel implemen-

tation. Moreover, the application of the preconditioner is simply matrix-vector multiply instead of
backsolve and it can be done easily in parallel. On the other hand, due to its algebraic nature, it is

applicable to both general and PDE problems. Moreover, recent studies of (;rote and Huckle [21] and

Chow and Saad [1 !] show that it is robust for matrices in Harwell-Boeing collections. The main idea

of sparse approximate inverse is described as follows.
Consider solving the right preconditioned linear system,

(1) AMy:b, x= My,
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whereA is large, sparse matrix and M is a right preconditioner. We want to find a sparse matrix M

so that IIAM - II1 is small in some norm. This approach was first studied by Benson [2] and Benson

and Frederickson [3]. More precisely, they minimize the residual matrix,

(2) mjnllAM - II1_,

subject to some constraint on the number and position of the nonzero entries of M. The Frobenius

norm is particularly useful for parallel implementation. Notice that

j=l

where mj and ej are the jth column of M and I respectively. Thus solving (2) leads to solving n

independent least squares problems,

(3) rain IIAmj - _j 112, j -- 1 ..... ,,,
m 3

which can be done in parallel•

Another possibility is to use a weighted Frobenius norm which had been investigated intensively

by Kolotilina et al [26] [25] [27]. A complete survey can be found in [1]. Other constructions of

approximate inverse are discussed in [11] [10] [30] [4] [5] [19] [S]. A comparison of approximate inverse

preconditioners and ILU(0) on Harwell-Boeing matrices can be found in [20]. In this paper, however,
we shall focus primarily on the Frobenius norm approach.

In practice, it is desirable to look for sparse solution of (3)• However, this poses two difficulties: how

to determine the sparsity pattern of M and how to solve (3) efficiently• Recently, two main approaches

have been suggested. One is discussed by Cosgrove et al [12] and (;rote and Huckle [21] and the other

is by Chow and Saad [11]. For the former approach, they solve the least squares problems (3) by QR

factorization, which may sound costly. But since mj is sparse, the cost of QRF can be greatly reduced.
Moreover, they derive algorithms to determine the positions of fill-in adaptively. Similar methods can

be found in [26], [25], [27], [22], [23], in which case, the sparsity pattern of M is typically fixed as
banded or the nonzeros of A.

For (;how and Saad's approach, they use standard iterative method (e.g. (;MRES) to find an
approximate solution to

Amj = ej,

and apply some dropping strategy to m3 to control the amount of fill-in. The idea is to let the
Krylov subspace build up the sparsity pattern gradually and then the nonzeros entries are selected

automatically by size. We should also mention that they have suggested several other possibilities of

solving (2) [l 1].

A major drawback on the use of spare approximate inverse preconditoning for elliptic PDEs is the
assumption that A -1 can be approximated by a sparse matrix M. It is well known that A -1 will, m

general, be dense even if A is sparse. Yet one might expect rapid decay in the A-1 entries away from

the diagonal [15], [7], [16], [17] for some class of matrix A, e.g. banded or diagonal dominant matrix.

However, as mentioned in [12], [ll], if we require llmM-ll[, < l, we can always find a sparse matrix A

while M has to be structurally dense. Even if A is symmetric positive definite or A comes from PDE

problems, the inverse entries need not decay fast enough.

For example, consider the following near tridiagonal symmetric positive definite matrix of size

40×40, derived from some artificial periodic boundary like problem,

(4) A =
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FIG. 1. Mesh plol ofA -l.

As we can see from Fig l, the inverse entries are all greater than one and hence have no decay at all.
We also remark that even if A -1 has decay away from the diagonal (e.g. A comes from tile

Laplace operator), the rate of decay may not be enough for the approximate inverse to have optimal

convergence, in the sense that the number of iteration for convergence is independent of mesh size.
This is verified numerically in Table 1, where SPAI is the sparse approximate inverse given by Grote

and Huckle's implementation [21]. The number in the bracket is the maximum allowable size of the

residual norm of each column, in general, the smaller the number is, the better (but also the denser)

the approximate inverse is.

h

1/8
1/16
1132
1/64

SPAI(0.4)
16

29

67

160

no. of GMRES(20) iter

SPAI(0.2) ILU(0)
10 9

17 14

37 25
63 57

no. of nonzeros in precond.

SPAI(0.4) SPAI(0.2)ILU(0)
208 696 288

1040 3640 1216

4624 16440 4992
19472 69688 20224

TABLE

Convergence of GMRES(_O) where A--_D Laplacian.

For PDE problems, sufficient decay of inverse entries does not necessarily happen. More likely to

occur, however, is piecewise smoothness of the entries in the rows and columns of the matrix. The key
observation is that if A corresponds to a differential operator of some elliptic PDE, the inverse would

be the corresponding discrete Green's function. (See appendix for a simple example illustrating this

idea.) Similar observation in the case of solving integral equation can be found in [6] and in the case

of hyperbolic and parabolic PDE can be found in [18]. Since A -1 corresponds to the Green's function,
we would expect piecewise smooth changes in the inverse entries, with singularity along the diagonal.

In other words, if we treat the inverse matrix as a graph of a function of two variables, then we will

get a piecewise smooth graph. Note that piecewise smoothness is more general in the sense that the
entries need not have decay as shown in Figure 1. From now on, we shall focus our attention on this

kind of matrices and try to derive an efficient approximate inverse preconditioner.
Our main idea is to convert the smooth entries of A-1 into small numbers so that approximate

inverse can be effective. Tile technique is to look for a basis such that A -1 has a sparse (modulo small

numbers) representation. In fact the idea is similar to that of Beylkin et al [6] and Engquist et al

[18]. Our strategy is to apply wavelet transforms to compress these piecewise smooth inverse matrices.
Then we combine this idea with standard approximate inverse techniques (e.g. Grote and Huckle's

implementatiou) to construct the sparse approximate inverse. The use of wavelets to solve integral and
differential equations can also be found in [6], [18], [19], [8].
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In section 2, we show how to adopt the wavelet transform in the least squares approach to solve

(3). In section 3, we justify theoretically that a smooth inverse has better decay in the wavelet basis.

We also make an interesting connection between our wavelet based preconditioner and the classical

hierarchical basis preconditioner. In section 5, we estimate the extra cost for the wavelet transform

and discuss the implementation issues of how to simplify the algorithm. In section 6, we present several

numerical examples to compare the various methods. Finally, we make some conclusions in section 7.

We would like to remark that the purpose of this paper is not to present an ultimate algorithm for

solving linear systems. Rather, we address a conceptual weakness of the standard approximate inverse

technique and propose a way to remedy it. The main emphasis is on how to model the approximate

inverse appropriately in order to solve a certain class of problems, e.g. matrices with piecewise smooth

inverse. Many algorithmic variants are in fact possible but have not yet been fully explored. It is

hoped that this paper will lead to further development and improvement of algorithms.

2. Fast Wavelet Based Approximate Inverse. The advantage of applying wavelet technique

is to convert possibly large but smooth entries into small quantities so that the sparse approximate

inverse can be more effective. Although Fourier basis also possesses similar approximation properties,

we prefer wavelets to Fourier basis because the inverses we are approximating typically have local

singularities which could cause the Gibbs phenomenon if Fourier transforms were used. Wavelet trans-

forms, on the other hand, are local both in space and frequency. Intuitively speaking, for a function in

L 2 with piecewise smoothness, only a small number of wavelet ba-sis functions is needed to represent

it well.

Similar to Fourier basis, wavelets can also be realized in a discrete sense. Given an orthogonal

wavelet function in the continuous space, there corresponds an orthogonal matrix W that transforms

vectors from the standard basis to the wavelet basis. Furthermore, if v is a vector of smoothly varying

numbers (with possibly local singularities), its wavelet representation _ = Wv, will have mostly small

entries. We shall make use of this remarkable property to construct our sparse approximate inverse.

We can also represent two dimension transforms by W. Let A be a matrix in the standard basis.

Then ,'t = WAW T is the representation of A in the wavelet basis. This wavelet representation A is

also called the standard form of A [6]. Nonstandard forms of A also exist but we do not discuss this

further.

Since we are only interested in the application of wavelets to construct an approximate inverse, we

only mention a few features of wavelets. See e.g. [14] for more detail description of wavelets.

Assuming A-1 is piecewise smooth, our idea is to apply wavelet transform to compress A-I and

then use it as a preconditioner. At first glance, this seems impossible since we do not even have A- 1

Our trick is the observation that

,4-1 _. _.A-I[4:T = (WAI_,T)-I = :_-1,

where W is an orthog_onal wavelet transform matrix. Therefore we can first transform A to its wavelet

basis representation A and then apply, for example, Grote and Huckie's method to find an approximate

inverse for ,-_, which is the preconditioner that we want to compute. In other words, we do not need

to form A-L but are still able to compute its transform. We shall make all these ideas more precise in

the next section.

2.1. Wavelet Formulation. We shall show how we adopt wavelet transform in the least squares

approach. Consider equation (2) again. Let W be an orthogonal wavelet transform matrix, i.e. _ = Wx

is the vector x in the wavelet basis. (Note that W can be l-level or full log 2 n-level wavelet transform

matrix.) Then

(5) min]lAM-l][r = min[]WAWTWMW T-lIlt
M M

= minll i t - tll ,,
%t

where ,4 = WAVe T and _1 = _Vlt.l[4 _T are the representations of A and M in the wavelet basis

respectively. Thus, our n lea-st squares problems become

(6) rain liAr-hi-  jII2, J = 1,2 ..... ,,.
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is sparse (but probably denser than A) since A is. Because of the wavelet basis representation, if
M is pieeewise smooth, we would expect 2_/, neglecting small entries, to be sparse too. Therefore,

the sparse solution of (6) would hopefully give rise to a more effective approximate inverse than the

original approach without the wavelet transform. We shall justify our claim numerically in section 6.

2.2. Algorithm. In the previous section, we derive the wavelet formulation of our approximate
inverse. Then we can simply apply the standard techniques of approximate inverse (e.g. Grote and

Huckle's implementation, which is called the SPAI algorithm [21]), to solve the n least squares problems

(6) in parallel. Here is the algorithm.

Wavelet Based Approx Inverse Algorithm

(a) Wavelet transform A to get A = WAW T.

(b) Apply standard approximate inverse algorithm (e_g. SPAl) to solve for 55/.
(c) Use M as preconditioner to solve: A_" = b, where b = Wb.

(d) Apply backward wavelet transform to _ to obtain x = wT&.

It should be noted that. if we know the sparsity pattern of I_l a pr_orz, we can simply use that

pattern to solve the least squares problems (6) instead of using (;rote and Huckle's adaptive approach.
It will then be much more efficient. We shall discuss the implementation issue further in section 5.

3. Theoretical Aspect. Our wavelet based approximate inverse relies on the ability of wavelets

to change (local) smoothness to small wavelet coefficients, in this section, we shall combine the classical
result of Beylkin et al [6] and our construction to derive an residual estimate for our preconditioner.

In the discussion below, we shall follow the notation in [6]. We list some useful definitions which

will be used later. Define the set of dyadic intervals on [0,1] by,

z -- {[_-III, _-L(II + _)]:, <_It _<_1 _ _,, < I < log_ \}

Let lj_ = [2-Jk, 2-J(k + 1)] 6 I. Then [ljkl=length of ljk is defined as: 2-J(k + 1) - 2-Jk = 2-J.
In order to bound the size of the elements of A-1 in the wavelet basis, we need the following

smoothness assumptions on the Green's function G(z, y):

(v) I(;(x, u)l _<

(8) Ic_7(;(_,y)l + Io7(;(_, u)l <

for some m > 1 and C,_ > 0.

Ix - Y['

Cm

1_ - ylm+l '

The following is a classical result of Beylkin et al [6] on the estimate of integral operator.

THEOREM 3.1. ,%ppose the Green's function G(x, y) .satisfies the smoothness assumptions (7) and

(8). Let ft -I be the discrete operator of G(x,y) in the wavelet basis. Then the (k,l)th entry of A -1 zs

bounded by,

where I_, Ij E Z, tlk[ <_ ILl and d(Ik, It)--distance between lk and It.

From the bound, we can see that the length and position of Ik and Ii determine the size of (_-1)k._.

By the definition of dyadic intervals and as mentioned in [6], d(Ik, It) is equal or close to 0 at O(n log 2 n)

locations only. In other words, effectively _-I only has O(n log 2 n) number of elements for large enough

11.

With this result, we are ahle to estimate the quality of our approximate inverse. Let _ > 0 be given.

Define a sparsity pattern S to be:

s = {(ll, I): (_-_)lI,_ >--_}-
5



Dueto Theorem3.1,thenumberof elementsin S = O(\ log(\). We have the following estimate.

THEOREM 3.2. If we choose ,5 as our sparstty pattern, then

(9) [tAM - I[[F <_ nIIA[IF¢.

Proof. We first define an intermediate matrix/Y which is essentially tile truncation of A-1 by,

{ (A-')i,._ (i,j) EN,( fi; )i,j = 0 otherwise,

and denote the jth column of ]_r by fi,. The inequality (9) is a direct consequence of (5), (6), the

definition of least squares solution and the definition of N and is derived as follows:

IIAM - II1_ = llA r- Zll 

= £ - II: 
j=|

_<  IIA ,, -
j=l

= II  -tll 
= ItA( -
_< tlAII II -A- II 
_< n211AIl ,2

Remark: Similar bound can also be found in [21]. Our estimate is practically more useful in tile sense
that. the sparsity pattern of M is only O(niog 2 n) while those in [21] does not guarantee this.

The result of Theorem 3.2 is for theoretical interest only. First of all, the sparsity pattern cal,b'

is not known in general. Besides. O(nlog 2n) elements for M may be still too dense for practical
purposes. Furthermore, because of the special finger-like distribution of the nonzero elements of M
given by S, the amount of computation for solving the least squares problems may differ substantially

from column to column. Thus in our implementation, we only choose a subset of S which corresponds

to those entries near the main diagonal. We find that the quality is still promising as will be shown in
section 6. The implementation detail will be discussed more in section 5.

4. Connection to hierarchical basis preconditioner. Because of the hierarchical structure

of wavelets, there is a natural connection between our wavelet approximate inverse and the hierarchical
basis preconditioner [33] [28]. Our wavelet approximate inverse, denoted by M war, can be considered

as an approximation to the transformed A -l That. is,

M wAr = I/vTI_4}_/,

(10) A) = approz(ft-l),

where approx(A-I ) is an approximation of A-I In our case, it is given by the solution of the least

squares problems (6). We can also express the approximate inverse, M HB, given by the hierarchical

basis preconditioner in a similar form [28].

M HB = S r M S,

(11) /W = (approz(A)) -1

where ,b<r is the non-orthogonal transformation matrix from the hierarchical basis to the standard

basis, ,4 = ,b'A,b'T , and approz(A) is another approximation of .4, e.g. coarse grid operator of A.



These two approximate inverses are similar in that both possess a hierarchical structure. In fact,
the hierarchical basis can also be considered as a special kind of wavelet since it consists of a hierarchy

of piecewise linear functions and they are precisely the "hat" functions in the wavelet terminology. On
one hand, our wavelet approximate inverse is more general than the one by the hierarchical basis in
the sense that one is allowed to use other kind of wavelets, in particular, the orthogonal wavelets with

compact support by Daubechies [13]. On the other hand, the converse is also true in the sense that

one could apply the hierarchical basis transform in a more general domain.
The main difl'erence between the two approximate inverses is the way they approximate the original

matrix A. For the approximate inverse given by the hierarchical basis in (11), we first approximate A,

e.g. by a block diagonal matrix, and then compute the exact inverse of it. For our wavelet approximate
inverse, we compute A exactly and then approximate its inverse by solving the least, squares problems

as discussed in section 2. Typically, the approximate inverse given by the hierarchical basis is block

diagonal with zero bandwidth except for the coarsest block while the one by wavelet can have nonzeros
anywhere. If we choose the same block diagonal for the nonzeros of ASI, it. will reduce to the same form

(but probably with different values on the entries) of _I.
(;onnections of wavelets and hierarchical basis are also made in [31], [32].

5. Complexity and Implementation of Algorithm. The naive algorithm m section 2.2 needs

quite an amount of overhead for doing the wavelet transformation. In this section, we will analyze

each step of the algorithm and discuss some implementation issues of how to simplify and speed up the

procedures. Meanwhile, we also analyze the sequential complexity of each step. We shall show that it
is essentially O(n), except step(a) which requires O(kn) operations, where k depends on the number
of levels of the wavelet transform.

In the following discussion, we assume that the wavelet used is orthogonal and of compact support,

[13], [14]. Orthogonal wavelets are used so that. the formulation developed in section 2 makes sense.
tlowever, one could also use non-orthogonal wavelets anyway. Compact support, on the other hand, is

indispensable so that the wavelet transform is only O(n) and .A does not become dense.

Step (a). In general, to compute the wavelet transform of a vector requires O(n) operations.
(_omputing ,'t = WAW T is equivalent to transforming the columns and then the rows of A (or vice

versa). Thus it will cost. O(n 2) operations. However, since A is sparse, if we assume that there are only

O(1) nonzeros in each column and each row, the cost will be reduced to O(kn) where k, ranging from

1 to log.. n, is the number of levels in the wavelet, transform. In fact, in the parallel implementation,

we do not. need to form A explicitly in each processor. Notice that solving each least squares problems
only need a few cohmms of A. We just form those columns and the cost will be reduced to O(n).

Step (b). in each level of the transform, we will introduce a fixed amount of fill-in. Even though

there are only O(1) nonzeros in each column and row of A, there will be O(k) nonzeros in each column
and row of A. We could choose k so small that the number of nonzero introduced is acceptable. We may

also reduce the cost significantly by taking advantage of the fact that for smooth coefficient problems,

the (;reen's function typically has singularity only at a point. In other words, A -1 only has singularity

along the diagonal. Hence it is reasonable to fix the sparsity pattern of M to be block diagonal. In
fact, our current implementation already assumes block diagonal structure for )_/. This assumption

saves an enormous amount, of time used for searching for the next nonzero entries adaptively. By the

way, adaptive searching procedure is usually less amenable to parallel implementation. We may further

reduce the cost by adopting the concept of local inverse in [30]. More precisely, we use the nonzero

indices, i, of 7hj for the column and row indices of,4 and then we compute the QR factorization for

the submatrix _,t(i, i) when solving _6). This reduces the overall cost of step (b) to OQ,).

Step (c). When we solve ,4k = b by some iterative method, we need to perform A times a vector.
if we do it. directly, the cost. will be O(kn) as 7t has O(kn) nonzeros in each row. Note that

,4v = W(A(WT v)).

If we first backward transform v, apply A and then lransform it back, the overall process will only be

O(T_).

6. Nunlerieal Results. In this section, we compare our preconditioner with those by Grote

and lluckle's SPAI and ILU(0). We choose several matrices that come from different elliptic PDE.
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Theinversesof all thesematricesarepiecewisesmoothandthesingularitiesareclusteraroundtile
diagonal.Forefficiency,insteadofapplyingSPAItosolvefor A?/adaptivelyinstep(a)ofouralgorithm,
wespecifya blockdiagonalstructurea priori for _/ and then solve (6) by the QRF as discussed in

section 5. In all the tests, we use the compact support wavelet D4 by I. Daubechies [13], [14]. We

apply 6 levels of wavelet transform to matrices of order 1024 and 8 levels of transform to matrices of

order 4096. Note that the number of levels is arbitrary. One could use different number in different
situations.

We apply these preconditioners to GMRES(20). The initial guess was x0 = 0, r0 = b and the

stopping criterion was [Ir,_ll/[Ir0[I < 10 -6 . All the experiments were done in MATLAB in double

precision.

Example 1: We use two simple I D matrices to show the benefit from using wavelet transforms.

The first one is a slightly modified artificial matrix in (4) where the diagonal entries are changed from

2.01 to 2.00001 and the size is 1024x 1024. The second matrix is the ID Laplacian operator derived

from the following:

,,"(x) = f(z), in (0,1),

,_(o) = o, _'(1)= 0.

Neumann boundary condition at x = 1 is used so that there is no decay in the Green's function near

the boundary.
The bandwidth is 0,0,5,5,5,5 for the 1st to 6th level of the block diagonal structure of A_/respectively.

Example 2: In this case, A is the 2D L_ap[acian operator with size 1024x1024 and 4096x4096.
For n=1024, we choose the bandwidth of M as before. For n=4096, we choose the bandwidth =

0,0,0,0,5,5,5,5 for the 1st to 8th level of the block diagonals respectively.

Example 3: We try to solve something more complicated than the Laplace equation but still

having a piecewise smooth inverse. Consider the following PDE with variable coefficients,

((1 + x2)u_)x + uu_ + (tany)2u_ = -100x 2.

We solve the 32x32 and 64x64 grid cases. The bandwidth of the block diagonal of AS/ is the same as

before.

Example 4: In this case, A comes from a PDE of helical spring:

3

u_ + uu_ + 5--_yUr - 2GA = O,

where G and/_ are some constants. Same setting as before.

Example 5: Finally, we show an example where our wavelet preconditioner does not work. The
matrix A comes from a discontinuous coefficients PDE:

(a(_',y)u_)_ + (b(x,y)uu)u + u_ + uu = sin(,'rxy),

where the coefficients a(x, y) and b(x, y) are defined as:

10 3 (x, y) • [0, 0.5] x [0.5,1]
_(x, u) = b(x, u) = 10_ (_, u) • [0.5, 1]x [0,0.5]

l otherwise.

The bandwidth is chosen to be 5,5,10,10,15,15 to make the number of nonzeros comparable to that of

SPAI(0.2). Such modification is made so that sparsity is not a factor for the failure.
The convergence of GMRES(20) with different preconditioners in each example is shown in Figures

2-5 and is summarized in Table 2. In Example I, we can see that S['AI(0.4) and SPAI(0.2) converge

very slowly in this somewhat artificial but illustrating case. On the other hand, the wavelet based

preconditioner converges much faster. This shows the advantage of wavelet transform in the case

8



where A -1 is smooth with singularity only along the diagonal. We do not show the convergence of

ILU(0) since it only takes 3 iterations to converge. This is exceptional because of the special near
tridiagonal structure of A. Table 3 shows the number of nonzeros for each preconditioner. The wavelet.

based preconditioner requires much less amount of memory than SPAI does.
In Examples 2-4, the wavelet based preconditioner is most efficient in terms of convergence and

storage. Although the convergence of the wavelet based preconditioner still depends on the mesh size

(Figure 6), the dependence is less than ILU(0) and much less than SPAI. However, we would like to

point out that this comparison is very rough since the preconditioners SPAI and ILU(0) take up much

more nonzeros.
Besides rapid convergence, we can also see a tremendous gain in storage for the wavelet based

preconditioner as n increases. This gain essentially comes from the wavelet, compression. The larger
n is, tile more compression we can get. It is because the effect, of singularity becomes less and less

prominent as the singularity is only located along the diagonal.
Table 4 gives a comparion of the total operation counts for each method. The count estimate

consists of the number of GMRES(20) iteration, the cost of matrix-vector multiply, application of

the preconditioner and the number of inner products/saxpy operations. Since the number of inner

products/saxpy operations depends on the iteration number, in the average, our operation counts

estimate for one GMRES(20) iteration is:

count = nnz(A) + unz(M) + 21n,

where nnz(A) and nnz(M) are the number of nonzeros of the matrix A and the preconditioner M

respectively and n is the size of the matrix. The count for ILU(0) is normalized to one. The wavelet

preconditioner shows a superior operation counts over all the other methods in Examples 2-4. In fact,
the results is even better when n is larger. ILU(0) is exceptional good for the ld problems in Example

1 as explained before. Despite that, the wavelet preconditioner still takes much smaller counts than

the other two approximate inverses.
Finally Figure 7(a) shows that the wavelet based preconditioner does not always work. As mentioned

before, we assume that the singularity of the Green's function is only at a point so that the wavelet

transformed inverse has large entries near the main diagonal and our implementation can capture

those successfully as shown in previous examples. However, for discontinuous coefficient, problems,
tile Green's function has addition singularity along the discontinuities of the coefficients as shown in

Fig 7(b). Hence the inverse is not as smooth a._ before. Thus our block diagonal structure may not

completely capture the significant elements of the exact inverse. We should remark that the failure is
mainly due to our current implementation. In principle, if we can locate the significant elements by

some adaptive procedure (e.g. the one given in [21] and [11]), we should be able to obtain an effective

approximate inverse preconditioner. However, such sophisticated adaptive searching technique is not

fully developed yet for this class of problems and further investigation is needed.

Example n
la 1024

lb 1024

2 1024

4096

3 1024

4096

.4 1024

4096

5 1024

Wavelet SPAI SPAI(0.4) SPAI(0.2) ILU(0) No precond.
32 >200 >200 3 >200

71 >200 >200 1 >200

25 67 37 25 116

50 160 63 57 >200

26 100 40 34 >200

66 >200 129 93

26 84 36 31

68 >200 126 89

>200 64 34 21
TABLE 2

Number of GMRE,q(_O) iteratwns

>200

183

>200

>200
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Example
la
Ib

2

3

4

5

7l

1024

1024

1024

4096

1024

4096

1024

4096

1024

Number of

Wavelet SPAI SPAI(0.4) SPAI(0.2) ILU(0)

3544 5120 21504 3072

3544 5121 25425

16440

3072

49923544 4624

6616 19472 69688 20224

3544 4514 17260 4992

6616 18618 73936 20224

3544 4624 16387 4992

6616 19472 69628 20224

13464 5677 18952 4992

TABLE 3

nonzero in approzunate inverse

Example 71
la 1024

lb 1024

2 1024

4096

3 1024

4096

4 1024

4096

5 1024

Wavelet SPAI SPAI(0.4) SPAI(0.2) ILU(0)
10 >72 > 111 1

72 >215 >362 1

0.95 2.65 2.02 1

0.78 2.79 1.54 1

0.73 2.90 1.63 1

0.63 >2.12 1.98 1

0.80 2.68 1.58 1

0.68 2.23 1.97 1

3.11 2.33 1>12

Operation count estimate. The count

TABLE 4

for IL U(O) is normalized to I.

7. Conclusion. Although our wavelet based preconditioner does not give rise to a "black box"

solver, we have extended the potential applicability of approximate inverse to a larger class of prob-

lems, namely, matrices with piecewise smooth inverses. There are two main factors concerning our

preconditioner: choice of basis and sparsity pattern. We have shown that for our block diagonal im-

plementation, the wavelet basis is suitable for matrices with piecewise smooth inverse and singularity
along the diagonal. Moreover, significant amount of storage can be saved. We should remark that other
choices of basis are also feasible to solve specific problems, e.g. higher order wavelets, basis derived

from multiresolution methods.
If the singularity of A -1 is along the diagonal, we have shown that block diagonal structure is

sufficient. However, for more general situation, e.g. discontinuous coefficient case, where the singularity

is not necessarily near the diagonal, more sophisticated adaptive searching procedure is needed to locate

the sparsity pattern correctly.

Acknowledgnxent. We would like to thank Barry Smith for inspiring the idea of combining SPAI

preconditioners with a wavelet basis and his valuable comments on this paper.

Appendix. We shall show timt for 1D Dirichlet problem, the inverse of the discrete Laplacian

operator A is actually a discrete Green's function. Consider the following problem,

-u"(z) = f(:t) V_ E (0, 1)

u(0) = v(t)=0.

Then t lw solution is given by u(x) = fcl (;(z, y)f(y)dy, where G(x, y) is a (_reen's function defined as

(;(x,y)= { Yx((l-x)l y) z<y<0<Y< X,l.
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Letapartitionof [0,1]be{x0,xl .... ,Xn+l}. We want to evaluate y at the points {xi}. By definition
of U,

_0 1
u(x,) = (;(x_, u)f(y)dv.

We compute the integral by trapezoidal rule and we obtain

._ C;(xi, x3)I(xj )
n+l

j=l

n+l n+l'n+l
j---I

tl

j=l

where

_ 1G( i J
n+l n+l'n_l )

{ (-g-_l) [j(n + 1 - i)] j _< i,= N-_s[i(n + 1 -- j)] i _< j.

On the other hand, let A be the corresponding discrete Laplacian operator (second order central

differencing) and b = (bj) = (fj). Then the solution for Ax = b is precisely z = Gb, where G = ((;ij)

is defined above. Thus, rows of A -1 can be viewed as a discrete Green's function.

Results in higher dimensions can be also derived similarly.
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